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ABSTRACT

The resultant is applied to the problem of weights in cyclic codes. The binary code
arising from the projective plane of order 10 (if it exists) is examined. T-design decoding
is discussed in general. and the special case of the {48, 24) binary extended quadratic resi-
due code is worked owt in detail. The (60, 30) ternary extended quadratic residue code is
proved to yield new 5-designs. Miscellaneous results include study of the question whether
Steiner triple systems support linear codes.
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PART I

A RESULTANT APPROACH TO CYCLIC CODES

We begin with an elementary remark on weights occurring in some cyclic codes. Let
n be prime and consider a cyclic code of length n over GF(q) = F. Let { be a primitive n-th
; root of 1. Then K= F({) is a field of degree [ K:F] = the multiplicative order of q modulo
n. Let us suppose [K:F] = eé and let L be the intermediate field as irdicated:

ot
oo R

128

The i-th coordinate of a vector in the cyclic code is expressed as:

sy

T(et®') + T(ex®t) +... + T{c t%!)

aay

eé-1 . the

BRI Uoh TR AR LRI

where the €45 ..., €, are in different orbits under multiplicationby 1, q, ..., q
integers mod n. This means that there is the usual polynomial f(x), depending on UREET
C such that the degree of f(x) is less than n and its coefficients are in K, and the i-th
coordinate of the corresponding code-vector is f (Cl). i(x) is the formal trace
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T(c]x 1 + ...+ CX r) with exponents on x reduced mod n.

The number of 0's in the code-vector is the degree of the greatest common divisor
(g.c.d.) (x"1, f(x)).

Now suppose we restrict the Cys oees € to lie in L. Then f(x) has coefficients in L;
and, therefore, the g.c.d4. must consist of some divisor of x"-1 over L. Under our assump-
tions, x"-1 factors into x-1 and a number of other irreducible polynomials all of degree ¢.
Therefore, the g.c.d. has degree A¢ or A¢ + 1. In other words, when the Cyy +o.y C,aTE in
L, the weight of the corresponding code-vector is congruent mod ¢ to n or n-1,

We can determine which of these possibilities arises to an extent, Let q= ps for a
prime p.

Case 1, pdivides ¢, Thenf(1) =0 as Tk /F(c) = ¢Ty, /F(c) for cel.. Thus, x-1 always
divides the g.c.d., so here the weights are n-1 mod ¢.
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Case 2. p does not divide 6. Then both cases arise because there are always ¢ in L

with "small'" trace 0 and on-0, respectively.

This completes our first remark, and we now analyze the g.c.d. more carefully and in

general, by means of some elementary and very classical algebra.

The greatest common divisor g(x) of the polynomials f(x) and h(x) over the field F is
defined as the monic polynomial over F of highest degree dividing both f(x) and h(x). Unless
f(x) = h(x) = O, it is unique; and it exists as the polynomial of lowest degree among those
of the form r(x) f(x) + s(x) h(x) as r(x) and s(x) run over F[x]. This characterization of
the g.c.d. shows that it remains unchanged if the field F is extended. These facts follow
immediately from the Euclidean algorithm. The following additional properties hold:

Let r{x) f(x) + s(x) h(x) = g(x). (1)

with the notation as above. On dividing by g(x), we see that r(x) and s(x) are relatively prime.
Also, there exist r(x) and s(x) satisfying (1) such that

deg r(x) <deg h(x) and deg s(x) < deg fix) (2)

One proves ;2) easily with the Euclidean algorithm. Using (2) and dividing (1) by g(x), one
sees that we can choose r(x) and s(x) in (1) so that

deg r(x) <deg h{x) - deg g(x)

deg s(x) <deg £(x) - deg g(x)

3

Suppose now we are given the polynomials f(x) and h(x) explicitly as

m m-1

f(x) = ax  +ax toeeva
n n-1

h(x) = box + byx Fae. bn

Using (2) we could then set up m + n linear equations for the unknown coefficients of r(x) and
s(x), with the right-hand side being the unknown coefficients of g(x). If we ordered the equa-
tions just so, we would have for the (square) matrix M cof coefficients (of size m + n)

I-2 FR70-3N
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ao al m
0 a, ay arn 0...0
} n rows
0 0 . 0 a, al. .a
0 0 0 b b b )
o D1 . n
0 0 ...bo l:.1 bn 0
> m rows
b b, ... b 0 ... O (4)
o 1 n

Thea for arbitrary polynomials r(x) and s(x) of degrees l=ss than n and m, respectively, the
coefficients of a polynomial of t:e form r(x) £x) + s(x) h{x) arise as

( e Tpeee 5 el S )M=( ) (5)

hi lo 1o hi hi lo
in an cbvicus notation for the polynomial coefficients as row-vectors.

The degree of g(x). Number the columns of M from the right, starting with 0. Suppose
the 5-th column has the property that it and the columns to the left of it span all the columns
of M, and that this is the left-most such column. The & is the degree of the g.c.d. g(x).
When § = 0, M is non-singular and g(x) = 1,

The reason for this is that a non-0 set of coefficients T and s; on the left of (5) can be
chosen to annihilate all columns to the left of the 6-th, but not the 6-th column. This choice
yields the maximum string of consecutive 0's on the high-degree end of the right-hand side
of (5) without producing all 0's there, (Incidentally, this shows the uniqueness, up to 2 con-
stant factor, of r(x) and s(x) in (1), satisfying (2), because the annihilator of the subspace of
columns of co-dimension 1 has dimension 1.)

We now look at the foregoing in terms of the matrix M, (This is adapted from {2] and
apparently goes back at least to BOcher [1], when it was all probably very standard. )
Suppose the 6-th column is defined as above and that we consider the small matrix Mb (of
m + n -26 rows and columns) obtained by peeling off 6 columns from each side and 6 rows
from top and bottom of M, Because we know there are r(x) of degree at most n-5 and s(x) of

FR70-3N I-3

Srgwery) |

D =3I, At Ly,

CHAN A SR € BN EL o P DA L A ST

AVLEE R bt g een e

AN T Bt L

Ve

e T ML

drorde gl e IR SR A R e S B B et 9 1V AT AT B e e vt e TSRS <t




degree at most m-5 satisfying (1), we know that the columns of M
Therefore, det MG #0,

5 Are linearly independent,

3 e o o .0
4 -
0 o
o . . . ® o m
\
n ROWS \
44— N >
v 1 0, e o o |4 o s o
<4 m > b b
Iy o e o o o n
by e o |d b,
m ROWS
b
bo e o o "
4' bo [ ] ® [ J [ bn

If, however, we expand MG to Mj by removing only j rows top and bottom and on each
side, with j < 6, then det Mj = 0 simply becasue the 6-th column and those to the left of it
gpan all the columns., We have proved:

LEMMA. The largest ""central" submatrix of M which is non-singular has m + n - 25
rows and columns, where 6 is the degree of the g,c,d. of £(x) and h(x).

We wow apply this result to coding theory, It really provides a general way to restate
the minimum-distance problem for cyclic codes.

1-4 FR70-3N




In the general cyclic code the code-vectors (9’0 yeoey an-l) are given as (f( 1, 1(%),
ceey f(tn'l)) , ¢ being a primitive u-th root of 1 aver GF(q) = F. The polynoinial {(x) is
essentially a sum of traces irom K = ¥(t) = GF (qu) to F, namely

ey e e,
f(x) = T(clx *egx “+ L+ cX ), Cys +-vy €K (6)

2 2 -1 -1
where by T(cxe ), we mean cx° + cqx(qe) + x(q e)+ .o qS x<qs e)

where (qie) means (here only) the least positive residue of qle mod n, f(x) depend: on cyr

.+C R
cees Ce The code-vector corresponding to Cys vves Cps has weight n-6, where ¢ is the
number of roots of f(x) (counted without multiplicity) among 1, ¢, ..., Cn'l; that is, the
weight of the code-vector is n-6, where § is the degree of g.c.d. (xn-l, f(x)) . This remark
characterizes, in principle, tiie weights in the cyclic code as n-6, where 0 takes the values,
for the various Cys eees Cpy for which M6 is the largest non-singular ""central" submatrix

of M. In principle, we have the several determinants det M, det M T det M2, ... as poly-
nomials in Cqs +ves Cpe Some of these polynomials vanish identically as functions on

KX ... XKand wme donot, The latter correspond to the weights of the code-vectors,
subject to our "-e:ama,

We can simplify the matrix (4) in this cyclic code case by adding columns so as to
eliminate the -1's in the bottom m rows, noting that h(x) = X" - 1, Then we have the

circulant
n-m-1 zeros
a o . . . 0 3 &y -o am_]
a1 0 a,... a9
am—z 0 o0 0 a’m"a
M= , .
3
a, 0
0 .
. 0
0 0 ag . am
FR70-3N 1-5
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as the upper right-hand n by n matrix in M as modified, The lower m rows of the modified
M may be neglected now because they are

m i

The question now becomes: for which values of the aj' s are the matrices obtained by
removine the top 6 rows and the right- hand & columns from M' non-singular? We rotate M
through 90 degrees to put it in the form

6. . .0

m
?
0 0
M = 2y N
!
®m 0... 0 ag ;‘m-l

which is constant along diagonals perpendicular to the main diagoral. Such a matrix is
called persymmetric, The result on weights now takes the following form.

PROPOSITION. With the ai' 8 in the form given by (6), the weight w occurs in the code
if and only if for some choice of the ai' s, the submatrix of M" consisting of the first w rows

and columns is non-singular and every larger such submatrix is (for the same a,' 8) singular,

Here we must point out the existence of the paper [3] on persymmetric matrices.
Although it is largely concerned with how many persymmetric inatrices there are of various
types, there is 2 singularity criterion which amounts to a reduction tc a smaller persym-
metric matrix. Despite strenuous efforts, however, we were not able to use this criterion
in a satisfactory way. Even on the (7, 8) binary cyclic code this method seemed difficult.

A reader interested in pursuing this approach, however, might well want to examine this
paper, for some modification of Daykin's methods might yield results more appropriate to

this probiem than those we were able to draw from it.

I-6 FR70-3N
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We dic use Daykin' s reduction method to prove the knownresult that in the (31, 10) cyclic
code (with primitive 31st roots of unity { and ¢ 5 as roots of the recursion polynomial), there
are only the three weights 12, 16, and 20; and at the same time we calculated the weight

Sl ls i MR
.

distribation. This required considerable effoﬁ, however, and in trying the method for some
codes over three and four symbols, and larger binary codes, we were forced to give up.

Working directly from the Proposition, however, we give simple proofs of the weight
proxerties of the maximal-length code and of the BCH bound for cyclic codes.

A oo N AP UM gk e ooty 2l A
TR YRS
.

The general BCH bound for cyclic codes may be stated as follows. In (6), choose r
so that the degree of xrf(x), when reduced modulo xn-l, is minimum, say m. Then the BCH

-

lower bound on the weight in the code is n-m. The proof using our Proposition is that for

w < n-m, the upper left-hand w X w submatrix in M" is singular for all choices of the ai' s.
k15
. . -1 _ 2 2-1 _ ok
For the binary maximal-length code, x "f(x) = Z Cc x , forn = 2"-1, The rows
0
of the circulant matrix M can then be represented as the polynomials r(x), xr(x), ...,

k

* xz -2 r(x), where the top row is r(x) = x_ 1f(x),

k-1 ,k-1
. c2 i '1+...+C=r(x)

and x' r(x) is reduced mod x"-1, Now, numbering the rows 0, 1, 2, 3 ..., let us multiply
the Oth, or top row, by 1, the 1st row by C, and the 2nd by Cz, the 4th by C4, and in general,
the 2'th row by c? fori = 0, 1, ..., k-1, We now add these chosen rows to find

k-1 k-1
1 f(x) + ... + c? X £(x))

2 4

x2 fx) + C

31; (f(x) + Cxf(x) + C

2 ) + %)

k .k
% (Cx + €2 x%)

o1

% (Cx + Cx) = 0 (mod x 1),

This shows not only that M" is singular but also that every upper left-hand square

| Y
wbmatrix after that of size 2" 1 is singular (since the last row involved in the linear combina-

k- 1). Therefore, the only non-0 weight is okl

~

tion is that numbered 2

I-7
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PART II

ON THE POSSIBILITY OF A PRCJECTIVE PLANE OF ORDER TEN

We report here on work in progress since September 1969, a regort of which was given
ac Oberwolfach, Germany at the conference "Combinatorial Aspects of Finite Geometries, "
March 30 — April 4, 1970.

1.  Self-Orthogonal Designs.

Let (S,4/) be a t-design withiSl = v and ID| = kfor Din (). Thus, every
t-subset of S is contained in precisely A members of @,where A is some fixed integer, We
say that (S, {/)) is self-orthogonal if IDNE! is even for every D and E in @ In particular,
then, we find that k is even by taking D = E.

Next, we determine all possible szif-orthogonal designs withx = 1; i.e,, al
possible self-orthogonal Steiner systems. Let(S, &))be such a system. For t - 1,%Dis
simply a partition of S, and whenever v = |S| is even, there is precisely (up to isomorphism)
one such design for every factorization

v = km
with k even, We discard this trivial case and assume t >1, For Do e@set

N,_, = 1{De%; IDAD I = t-1} |

An easy counting argument shows that

_ [k v-t+1
Ni1 = (t-l) [k‘-‘t‘+‘1’ ‘1}

or

_(k v-k
Nt-l“(t-l) P

For t even, N, , i3 necessarily 0 and this case cannot, obviously, occur unless v=k —an

t-1
even more trivial possibility which we again discard, So, we may now assume that t is odd

and t > 3, Ift>3 we can, by contraction, reduce to a self-orthogonal design witht = 3,

having determined these, all other self-orthogoinal designs will be extensions, Here Nt-l =

N2 = (1; % (An extension of a Steiner system of type t-d-n is one of type (t + €) - (d + e) -
(n + e) such that the contraction of the latter on e points is the original system,)

FR70-3N n-1
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Set
N, = {Deg); DND | = 1}

where Doef:/}'. Again, an easy ceunting argument shows that

(V—l) (v-2) _ll _ 2N
(k-3 (k-2 2

Now, N1 must be 0. Hence we conclude that

N, =k

1

00D @0 | |w-) -2
=) &0 ~ 1
or that
(k-1)2(v-K) = v° - kK® - 3v + 3k
or
v=k®-3k+4

Thus, v is determined by k. (In the more general case a similar argument shows that v
is determined by k and t.)

The fact that we have a Steiner system implies that k-2 divides v-2, that (k-1) (k-2)
divides (v-1) (v-2) and that k(k-1) (k-2) divides v(v-1)(v-2). But v-2 = (k-1) (k-2) and hence
we conclude that k divides v(v-1); thus kdivides 12, Thus, since k is even, k is 2, 4, 6,
or 12, For k = 2, v is 2, a trivial case, The cases k=4 and k = 6 are well anderstood;
the case k = 12 is the only undecided case. Because of known extension properties which
come from easy counting arguments we are able to sum up the preceding discussion in;:

THEOREM 1, Let (S,@) be a self-orthogonal Steiner system with parameters t, k,
and v. Suppose t>1 and k <v. Then one of the following four cases occurs:

a. t=3, k=4, v=_8 and the design is the unique extension of the projective plane
of order two or, in codingterms, the quadruple system associated with the (8, 4) extended

Hamming code.

b. t=3, k=6, v=22 and the design is the unique extension of the projective
plane of order four or, in other words, the design associated with the Mathieu group M22.

-2 FR70-3N




c. t=5, k=8; v =24 and the design is the unique Steiner system with those
parameters, the one associated with M2 4 Note thar this design is that of b. twice extended;
and it is the only self-orthogonal Steiner system with t >> 3 since the only other case is

d. t=3, k=12, v=112.

It is, or course, unknown at this time whether z Steiner system with the parameters
of a. exists, If it does, it is necessarily an extension of a projective plane of order ten
and has no further extensions. It was this numerical anomaly that titillated our interest in
the possibility of a projective plane of order ten being constructible within the framework of

algebraic coding theory. Our discussion to follow was motivated by cases a. and b. above.
The preceding discussion also affords a proof of the following.

COROLLARY. The only extendable projective planes are those of order two, four, and
possibly ten.

Proof. Such an extension is easily seen to be a self-orthogonal design with t = 3.

(One simply computes Ny and sees it is 0.)

2. The Linear Span of a Projective Plane,

Let (S @) be a finite projective plane of order n. Thus, (S, @) is a 2-design
witha=1, |§| = n? .0+ 1and ID| = n + 1 for D). I GF(2) we consider the collection of
characteristic functions for each De@ and set A equal to their linear span. Thus, A is the
row-space over GF(2) of the incidence matrix of the plane. Since the rational determinant
of the incidence matrix of a plane of order n is

n(nz +m)/2 (n+1)

the matrix is always singular over GF(2). Incase n is odd, A consists precisely of a ker-
nel of the linear functional which sums the coordinates of GF(Z)S; i.e., the space of even-
weight vectors. (This is trivial to see directly since the mod 2 sum of the n + 1 lines
through a point is the vector with 0 at that point and 1's elsewhere; these clearly generate
the even-weight subcode.) Here we are interested in the case of n even. The dimension of
A clearly depends on the congruence of n mod 4. We have the

n2+ n+ 2

PROPOSITION 1. Ifn= 2(4), thendim A= 3

2
In fact, we give an elementary proof of the fact that if dim A =r, then g + It 1-r
divides n(n +n)/ 2, where we only assume n is even, Thenn =2(4) will imply
r= (n +n+2)/2,
FR70-3N _




Proof. Let M be the incidence matrix of the plane., View M as a linear transformation
over GF(2) of GF(2)° into GF(2)°. Now dim Ker M=n%+n+1-r=k, say. Let a, ...,
a be row vectors in this kernel and set

[

w
|

N=

0k I

where we rearrange coordinates so that

a, = (0, 0,..., 1, =,..5; =%, ... %),
i-th coordinate

Now view M and N rationally. Clearly det N = 1, since it is vpper triangular with 1's on
the diagonal and NM has its first k rows all multiples of 2. Thus, 2K divides det NM = det

2
= n(n +n)/2 (n + 1) and hence the Proposition, since 2 divides n once erzctly.

A more elegant proof uses the result from the theory of elementary divisors that any
m X m integer matrix can, by pre- and post-multiplication by unimodular matrices, be pui
in the form Diag (d, d,, ...,d ) whered,!d,1... Id_. Clearly, then, for an incidence
matrix of a projective plane the moa p rank of the matrix is at least n2 +n+1 -8, where

(n? +n)/2(n+ 1), since at most s of the d,'s can be

p but no higher power of p divides n {

divisible by ;.

2
Since, for n even, dim A= 5—%111-?— (this because with an overall parity check added

A is gelf-orthogonal), clearly, we immediately have the Proposition, and moreover our last
remark yields

PROPOSITION 2, Let (S, @) be a projective plane of order n = 2 (mod 4). Let A* be
the subspace of GF(2)S U'x}, generated by all vectors which are characteristic functlons of
Du{*}, DA Then A* is a half-dimensional self-orthogonal subapace of GF(2)n +nE 2

Remarks: 1. A* is simply A with an overall parity check added.
2. In case A comes from a plane of order = 0 (mod 4), the dimension can
go down, For example, fcr n = 4, the dimension of A is 10, not 11(see subsecticn 3 follow-
ing). For arelated discussionof the possible dimensions of the linear spanof difference sets,

ee 1, 2].

n

-4 FR70-3N
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Although we are interested in the case n = 10, we proceed more generally under the
assumption that n = 2 (mod 4). Let A be as above. From Proposition 2 follows immediately
the

COROLLARY 1. Every vector in A has weight congruent to 0 or 3 modulo 4, and an
even-weight vecter is in A if and only if it intersects each line evenly, an odd-weight vector

is in A if and only if it intersects each line oddly.
We next determine the minimum weight in A,

PROPOSITION 3. The minimum weight in Ais n+ 1, Moreover, every vector of
weight n+ 1 in A is a line of the plane,

Proof. Suppose v in A has weight less than n+ 1, I d = weight v is odd, all n2 +n+1
lines meet v (i.e,, v and a line have a 1 in common). But at most 4 {(n +1) lines meet v,
a contradiction. If d is even, each line through a fixed point of v must meet v again. Hence,
the weight of v is greater thann+ 1. If v in A has weight n+ 1, there is some line D of
the plane meeting v at least twice, But then the n other lines through a point on D but not
on v (i such a point exists) must each meet v at least once, an impessibility. Hence v = D.

DEFINITION. An S-avc of 2 projective plane is a set of S points no three of which are

collinear,

An easy argument shows that S-arcs can exist only if S<n+ 2. An(n+ 2) arc is
here called an oval,

PROPOSITION 4. The vectors of weight n + 2 in A are precisely the ovals of the
projective plane,

Proof. The arguments are as above and very easy.

COROLLARY 2. In a projective plane of order n = 2 (iod 4), any two n+ 2 arcs

n; 2 points.

meet evenly, in at most
(This corollary is immediate from Propositions 3 and 4.)
The above results furnish a new proof of the following.

PROPOSITION 5. There do not exist projective planes of order congruent to 6 modulo
8; in particular, there does not exist a projective plane of order 6.

Proof, Consider A* for such a plane, It is self-orthogonal. half-dimensional, and all
vectors have weight congruent to 0 modulo 4, It is known either from the theory of quadratic
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forms or can be deduced immediately from Gleason!s solution of the MacWilliams eyuaticns
that in such a situation the ambient space has dimension congruent to 0 modulo 8. But this
dimension is n2 +n+ 2 =4mod 8, a contradicticn.

We now restrict ourselves to n= 10, Thus, A is a 56-dimensional subspace of
GF(2)111; i,e., a (111, 56) code over GF(2) and A+ is a 56-dimensional self-orthogonal
subspace of GF(Z)112 and simply A with an overall parity check added. The weight 11
vectors of A are simply the lines of the plane of order 10, the vectors of weight 12 in A

the ovals of the plane of order 10, A Pas precisely 111 weight 11 vectors.

A computation performed by MacWilliams, Sloane, and Thompson [ 3] has shown that
A has no vectors of weight 15, This fact, under the additional strong assumption that the
weight 12 vectors of 4* form the design of case d. in Theorem 1 — namely, a Steiner system
of typet=3, v= n2 +n+ 2, k= 12 ( this assumption is equivalent to assuming that there is
a projective plane of order 10 with an extension) — yields a unique weight distribution for A*,

It is
Weight Number of Vectors
0 ana 112 1
1Z and 100 1036
16 and 96 0
20 and 92 868,560
24 and 88 111,965,910
28 and 84 10, 847, 119, 360
32 and 80 581, 085, 136, 170
36 and 76 15, 631, 795, 001, 900
40 and T2 219, 372, 154, 900, 360
44 and 68 1,662,571, 548, 245, 150
486 and 64 6,958,514, 212, 873, 685
52 and 60 16, 330, 986, 833, 984, 592
56 21, 682, 256, 857, 734, 468

At the present time an attempt to construct such an A* is underway. The methods
being employed do not prejudice the question of existence. An instance of these methods is
recorded in suksection 4,
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3.  The Linear Span over GF{2) of the Lines of the 21-Point Plane,

The lines of this plane can be obtained from the Steiner System of type 5-8-24 A
by contraction, hence from the extended Golay (24, i2) code over GF(2). It is easy to show

. with counting arguments (using the 5-design properties of the weight 8 and 12 vectors) that
the contracted code, a (21, 12) code over GF(2), has the following weight distribution:

Weight Number of vectors 3

0 1 3

5 21 3

6 168 :

7 360 3

8 210 ‘

9 280 :

10 1008 ;

11 1008 1

12 280 3

' 13 210 |
14 360 1

. 15 168 3
16 21 3

21 1 1

Clearly, the 21 weight 5 vectors (the lines of the 21-point projective plane) are orthogonal
to the subcode of even-weight vectors. This code is a (21, 11) of course; its 168 weight 6
vectors are precisely the ovals of the 21-point plane.

b A

Computing directly from an incidence matrix of the 21-point plane, one sees that the

e f el

linear span is 10-dimensional. Hence, the span of the lines of the plane is precisely the
code orthogcnal to the even-weight subcode (which has dimension 11).

Since the weight 8 and weight 12 vectors of the (21, 12) come from weight 8 and 12
vectors, respectively, of the (24, 12) with zeroes at the contracted components, they are
clearly orthogonal to all vectors in sight. Hence, the linear span of the 21-point plane has
exactly 210 weight 8 (and hence weight 13) vectors and exactly 280 weight 12 {and hence

weight 8) vectors. This exnausts the code, Hence, the weight distribution of the linear
span of the lines of the 21-point projective plane is:
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Weight Number of Vectors

0 1
S 21
8 210
9 280
12 280
13 210
16 21 -
21 1

Observe that a weight 8 vector arises precisely as the sum of two lines since there
are 210 such configurations.

4.  The Row Space of the Z-Matrix,

Let Z be the matrix whose columns are 112 ovals of the 21-point plane,
precisely those ovals with a 1 at » and another at either 0 or 1, thinking of the plane as
coming from a contraction of the (24, 12) extended Golay code, the coordinates contracted
on being », 0, 1. (The .other 56 ovais of the plane have a 0 at . and 1's at 0 and 1.)

Because these 112 ovals form a 2-design (2-M21 acts transitively on them), each of
the 21 rows of Z has weight 32 and the sum of any two distinct rows has weight 48 (since A =
8 for the 2-design).

Since the columnsiof this matrix span the even-weight subcode of the (21, 12), the
rank of the matrix is 11, a fact easily seen upon exhibiting the matrix using Todd's table
[ 4] L]

We now determine the weight distribution of Z's row space, a (112, 11) code over GF(2).

Since the columns generate the space orthogonal to the span of the lines of the 21-point
projective plane, any relation among the rows of Z corresponds to a vector in the span of the
21-point plane, Since there are no weight 2 or 4 vectors in the span cf the 21-point plane,
each pair of distinct rows yields a different weight 48 vector,

Now, any vector in the row span ot Z is the sum of rows corresponding to a subset of
the plane no three of whose points are collinear, since any three collinear points could be
replacad by the other two points of the line containing them,
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Any four points in this plane, no three of which are coliinear, are in a unique oval.
In general, in any plane of even order n, any n + 1 points in general position lie in a unique
oval, And, in general, by looking at all the lines through a point, we see that there can

be at most n + 2 points in gerneral position.

One computes directly from the fact that each triple of non-collinear points is contained

in precisely 3 ovals, one each from the three classes represented by

w | 1 1 0
01 0 1
110 1 1

that the sum of these rows is a weight 56 vector, since the third of the three rows meets the
intersection of the first two precisely twice and each row precisely eight times.

Clearly, an oval of type 1 meets each column of Z cddly and hence such an oval yields
1

the all-1 vector. Any five poinis of such an oval, therefore, yield the complement of a row
while any four points of such an oval yield the complement of a sum of two rows; any three

yield, of course, a weight 56 vector.
By inspection (since they are all equivalent under 2-M21, one inspection suffices),
1 1
any four points or any five points of chosen ovals (i.e., of type 0 and 1) yield weight 56
1 0

1
vectors, Clearly, an oval of type 0 or 1 yields a weight 56 vector since it ricets its own

1 0
type evenly and the other type oddly. Thus, the only weights that appear ar 0, 32, 48, £86,
64, 80, 112 and we know there are 21 weight 32's exactly (and hence 21 weight 80's exactly

aﬁd(2;)= 210 weight 48's exactly (and hence 210 weight 64's exactly), By elimination

there are 1584 weight 56 vectors. Tabularly, the row space of Z has the following weight
distribution,

Weight Number of Vectors

0 1

32 21

48 210

56 1584

04 210

80 21
112 1
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PART I

T-DESIGN DECODING AND THE (48, 24) BINARY QR CODE

1. Introduction,

In our 1969 Report [ 3, I, 3] we presented a majority-logic method for decoding
the Golay (24, 12) binary code, a 5-design code, involving use of the 2-design formed by
the nuinimum-weight code-vectors with 1's at a given pair of coordinate places. This
method allowed correction of all errors of weight 3 or less and detection of ali errors of
weight 4, which together exhaust the coset leaders of the code, Here we present a method
for decoding binary t-design codes by means of the i-design formed by the minimum-weight
vectors, This was done for the (24, 12) code by Goethais [ 5] and has since been generalized
by him [ 6] independent of our work, although we expect eventually to publish this work
jointly with him,

The general tactic is simple to describe, If the orthogonal t¢ a code A has a t-design
among its vectors of a given weight, say with parameters A; t-w-n (see [ 2] for definitions
and examples), then this desgign may be regarded also as a t-1 or t-2, ,.,, or i-design with
parameters

A= At; t-w-n

A_1s (t-1)~w-n

A.l; 1“W"n . (1)
given by the gimple relations

Oy 0, 1 t (2)
K. = A. 0 Y 1= , 9 vy
i 7t ld—lit_i

(N)i stands for the familiar descending product N(N-1),,.(N - i + i). The general tactic in
this decoding method is to compute the dot-products of the Alvectors of the 1-design which
have 1's at a given coordinate place p with a received vector v + E, where v (from A) was
sent, and the error E was "committed" by the channel, The cutcome is the dot products

with E, a vector really of A 0's and 1f s; we are interested only in its weight, We com-
pute theoretically this weight for all possible cases for e (= weight of E) running from 1 up
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to some value, say, e, If these weights are Zyrerent from each other, then all cases are
: distinguishable from each other via this procedure: and so the code A will correct all
errors of weight e, or less; in particular, A has minimum distance at least 2e0 +1.

2, Calculation of the Decoding Table, and Some Consequences.

The job here is simply to identify the cases and compute the weight of the xl-length
vector mentioned above for each case, That is, we seek the number of vectors among the
chosen Xl in the design from the orthogonal code to A which have dot-product 1 with the

assumed error-vector, and we shall call this number the outcome,

Let p stand for the coordinate position being checked; that is, the Al vectors used
in the dot-product calculation all have a 1 at p. Let S stand for the set of these ll vectors
of B, Then, if the error has weight 1, .the outcome is xl if the error is at p, but is xz if
g the error is not at p. If the error has weight 2, then the outcome is AL R if the error
has a1 at p, and it is 2(12 - A3) if position p is not in error. These results are calculated
by simple inclusion-exclusion arguments, For example, assuming t = 3, the number
2(7\2 - A3) arises as follows: let the error be at p', p", neither equal to p, There are
7‘2 coverings of p and p', and Az of p and p*'; but coverings of all three, )\3 in number, have
been counted twice but have dot-product 0, Thus 2A2 - 2)\3.

S AN e

LEMMA 1, Lett=e, The outcome for an error of wéight e covering p is 7‘1 less
the outcome for an error of weight e - 1 not covering p.

s oo

Proof, It is almost self-evident; the xl vectors covering p have dot-product 1 with
an error vector E of weight e covering p if and only if they have dot-product 0 with the
vector of weight e - 1 defined by removing p from E (we identify a vector with the set of
coordinate places where it is 1 when convenient); the latter are all those not having dot-

e
NP BT

product 1 on E-{p}, hence the conclusion,

We present the results for t < 5 in Table III-1, in which the entries are the outcomes
as defined above,

Sy g oy o

sy,




TABLE -1, DECODING TABLE:OUTCOME OF DOT PRCDUCTS
ON ERROR VECTORS

Valid Weight Position p is
for Error Vector in Error Not in Error
1 ).1 Az
/I —————————————————
t=2 2 Ayt Ry - 2()\2 -A3)
____________________________ R, . S
/ -
t=3 3 A 22,422 y My -6y 42,
—————————————————————————————— /'————"'—‘———‘—'—'——‘—"‘-
/ - -
_t—z_4 B 4_ 1-3x2+6A3-4x4 S/ 4()\2 313+4x4 2)L5)
t=5 5 M 4(A2-3l3+4l4 2)\5) /16u+5(A -4A +82 -8x5)
6 x1-16u-5(xz-4x3+8x4-8xs) 16u+2(3h2-15)\3
+40A4-60A5)

The left-hand column of entries is calculated from Lemma 1 and from the right-hand

entries, which are derived by the kind of inclusion-exclusion argument given above, The
entries in the line for e = 6 will be explained in a moment, We now discuss the right-hand
entry for e = 5,

We assume t = 5,  is defined for each 6-subset of coordinates as the exact number
of code-vectors of B (of the weight class formiig the t-design in use) having 1' s at all co-
ordinates of 6-subset. In the right-hand entry for e = 5, the 6-subset is {p} UE, where E
is the error vector of weight 5, The outcome is the number of members of S meeting E
exactly 1 or 3 or 5 times, We indicate the derivation, 5)\2 is the number of members of S
meeting E once or more. Since there are 10 2-subsets of E, and each is counted twice in
the 5}\.. term, we exclude all the members of S meeting E twice or more by subtracting
20)\3 Every member of S meeting E exactly three times, however, was counted thrice in
57\2 and 6 times in 207\3, By adding 4(3))\ = 40X g Ve include all members of S meeting E
3 or more times, Those members of S meeting E exactly 4 times were counted 4 times in
5A2, 12 times in 20)\3 and 16 tlmes 40\ & hence we exclude the members of 3 meeting E
4 or more times by subtracting 8( 4))L = 40x Finally, there are by definition y members
of S meeting E 5 times; each of these was counted 5 times in 5A2 2(2) = 20 times in 20>\3

4(3) 40 times in 400, and 8(4) = 40 times in 40A.. The net is -15, so we add 16 p.

4 5
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The argument of Lemma 1 applies here even though we do not assume a 6-design,
hence our entry in the left at e = 6.

In the entry on the right at e = 6, v is defined as the number of members of S which
meet the weight-6 error E on exactly 5 spots, By an argument entirely similar to the pre-
vious one, we calculate the outcome. Note that the number of members of S which meet E
in all six spots is of no interest here, because they have dot-product 0.

We now state a Theorem based on this table and investigate some matters growing
out of that Theorem before returning to our decoding problem.

THEOREM 1. Let A be a binary code whose orthogonal contains a t-design. If the
entries in the first t-1 rows of Table III-1 for this code are all different from each other,
then the minimum weight d in A is at least 2t-1. Moreover, although the t-th row of the
table may have multiple entries, if these are all distinct from each other and from those
above, then d= 2t + 1,

Proof, There exists a decoding algorithm for A correcting any ¢ - 1 (or t) errors.

COROLLARY 1. The orthogonal of the non-trivial binary 3-design code has minimum
weight 5 or more unless the code is the extended maximal length (2k, k) code.

Proof, In Table II-1 we investigate the possibility of equalities among the entries in
the first two rows, making use of (2), of course.

1, I )\1 = Az, then the design is trivial; i, e,, it either consists of the empty set
(hl = 0) or has precisely one block consisting of the underlying set (d = n).

2, If 7\1 - 7‘2 = 2()\2 - A3) then, expressing everything in terms of >‘3’ we have one
of the following 3 cases:

a. A, =0 and the design is the empty set;
b. n=d, and the design consists of one block;
¢, n=2d,

This case can occur; e.g., A is the orthogonal to the extended Hamming code B, B has
minimum weight 4, so all double errors are ambiguous,

These resulte follow since the equgtion

n-1+2(d-2)
d-1" (n-2)

=3
as a quadratic in n hi 3 the solutions n = d and n = 2d,
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3. xl - )\2 = 712 implies n = 2d - 1, a contradiction, because the code must ke the
maximal length code, as we now prove,

PROPOSITION 1. The binary (n, k) code with n = 2d - 1 in which the weight d
vectors form a 2-design is the maximal length code.

Proof. There can be no repeated columns in the code (i.e., no two coordinates
are identical) because this would imply Ay =2y, hence from (2) that n=d, henced=1=n,
No coordinate functions are 0 or there would be no design, From Plotkin' s bound

d=n2 12k - 1)

it follows that n _>_Zk - 1; hencen = Zk - 1 gince no coordinate functions may be duplicated -
Q.E.D.

This result complements our Corollary 3 in [1].

Such a code is not a 3-design because its orthogonal, the Hamming code, is not
a 3-design [7].

We now complete the proof of our Corollary,

4, A = 2(;\2 - x3) implies

n-1 _ d-2
a1 2273

or if d > 2, the left side is negative and thus

9_:2*_1 <d,
which contradicts the bound d s“—’.‘:—l [3(6)]. Ifd=2, thenn= 3, a trivial case.

This completes the proof of the Corollary, and we return to our decoding topic,
3. Application to the (48, 24) QR Code,

We now specialize the problem to the (48, 24) extended binary quadratic residue
code,

This code is self-ortho~onal, of minimum weight 12, and all weight-classes form
5-designs [2]. We shall work with the weight 12 vectors, which are a 5-design with para-
meters 8; 5-12-48, It follows from (2) that

FR70-3N I-5




h5=8

A4=44

3=220

Ag = 1012

A= 4324

We now ’ill Table III-1 with these values for the )'s,

TABLE 1lI-2, THE DECODING TABLE FOR THE (48, 24) CODE

Position p is

Weight of Error In Error Not in Error
1 4324 1012
2 3312 1584
3 2740 1892
4 2432 2048
5 2276 2100 + 16y {0 u=5)
6 2224-16 2032 + 16v

It is apparent that all the entries are indeed different, except perhaps that those in-
volving p or v will produce a coincidence somewhere, We recall the definitions of yand v
and then make some needed remarks, For a given 6-set y is the number of weight 12
vectors of the (48, 24) code with 1' & at all the spots of the 6-set., The 6-sets understood in
Table III-2 are {p} v E and E on lines 5 and 6, respectively. v is defined .s follows: for
a given 6-set E not containing p, v is the number of 12-clubs (code-vectors of weight 12)
with 1's at p and at exactly 5 spots of E,

Thus, in particular, v is at most 48 (= 6x5).

REMARK 1, All we need from the table is the condition that no number appear in
both the left- and right-hand columns, This suffices to determine whether there is an error
at p.

m-6 FR70-3N
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REMARK 2,

a. I an error of weight 6 is contained in one or more 12-¢lubs, then it cannot be
correcied by any method in the sense that it is not a unique leader in its coset, Thereiore,
for each positive u, provided there is a 6-set contained in exactly p 12-clubs, we should find
the value 2224 - 16y on both sides of the table, and on line 6. Specifically, if E and E' are
6-sets whose union is a 12-club, and if pis in E, and g = u(E), v = v(E'), the outcome for
the error E must be the same as that for the error E'. Therefore

2224 - 16p= 2032 + 16v,
which is equivalent to p+ v = 12,

b. Since no two 12-clubs can meet in more thanr six places, an upper bound for g
is 7, Thus, for a 6-set E with a positive y, the value of v for the 6-sets E* such that E UE’
is a 12-club is at least 5, but at most 11.

Ambiguous Cases.

i. We have just seen that an error of weight 6 is uncorrectable when it has
positive p and that this fact is reflected in the outcome of our decoding procedure,

ii, The entries 2100 + 16y on line 5 at the right can never coincide with any of
those on the left, for by Remark 2 b, p is at most 7, hence 2100 + 16y is at most 2212; and
2224 - 16y' cannot equal 2100 + 16y since 2100 # 2224 (mod 16).

iii., For positive i we know that v <11, Therefore, the right-hand entry
2032 + 16y is at most 2208 when p >0, showing that none of these values can also appear
on the left,

iv., But for u= 0, we do not yet have any bounds on v except the obvious one
already mentioned (v <48), which gives 2800 as an upper bound for 2032 + 16y, On the left,
the entry 2740 is not 0 mod 16, and neither is 2276; 2432 is 0 mod 16, however, and so is
2032, Thus vy = 25 would give ambiguity if it arose,

v. The only remaining possibility is an error of weight 6 with u=0, Itis a
unique coset leader and ought to be correctable, but the left-hand entry on line 6, 2224,
would coincide with the right-hand entry if the value of v were 12,

The remainder of this account will deal with this only remaining unsettled
case, namely, the value of v for the error of weight 6 which is not contained in any 12-club,
for we prove in subsection 4 that v < 25,
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We state our findings,

PROPOSITION 2, For every 6-set E of coordinate places not contained in any
12-club and every p not in E, the value of v is 8.

Proof, By computer, The program is described in the Appendix to this part.

COROLLARY 2. The ambiguities of cases iv, and v. do not in reality arise, The
decoding procedure corrects al] errors of weight & or less and all errors of weight € whick

are unique leaders of their coset,
COROLLARY 3. No error of weight greater than 6 is a unique leader of its coset,

Proof. Suppose the contrary, that a vector E' of weight w =7 is the unique leader
of its coset. There can be no 12-club containing E', and if E is any 6-subset of E', then
ther= cannot be any 12-ciub containing E, for it would yield another leader of weight w on
being added to E'., But if E is one such subset of E*, the Proposition states that there are
12-clubs meeting E' in a 6-set.

Therefore the decoding procedure corrects all errors which are unique leaders in

their cosets,

It remains to determine how maay correctable errors there are; the only difficulty
is to find how many of weight 6, The answer is set forth in Table III-3.

TABLE -3, NUMBER OF CORRECTABLE ERRORS OF EACH WEIGHT

Weight w

0 1

1 48

2 1,128

3 17,296

4 194, 580

5 1,712, 304
6 2,334, 960%
w=1 G

Total 4,415,947
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About 18 percent (= 2, 334,960 + (42)) of errors of weight 6 are correctable.

There are approximately 10 million uncorrectable errors of weight 6 disiributed in

4,112, 124* cosets. All the rest of the cnsets, in number about 8 million, have more than

* one leader of weight 7 or more. The total number of cosets is 224 = 1€, 777, 216,

b e b b an e o MBp ginn - b

o s s

The :~distribution of 6-sets is given in Table IIi-4.

TABLE III-4, NUMBER OF 6-SETS CONTAINED IN EXACTLY p 12-CLUBS*

£ 4 Wote s St arpna e 4k g by e

] L
; 0 2, 334,960
1 5,629, 848
2 2,750,064
3 1, 400,976
4 129, 720
' 5 25,944
p=6 0
’ Total (42)
*These values were cbtained by computer (see Appendix),

4, Theoretical Results,

Although we were forced to resort to computer for some of our results, we have a
partial theoretical result which we now present, It is not dependent on our computer
findings,

LEMMA 2, Let E be an error of weight 6 not contained in any 12-club, Let p be a
point not in E, Then v (p, E) < 25.

Proof. v is defined ag the total number of 12-clubs which meet E in 5 places and
which cover p, Let Nl’ ceey N6 be the (mutually disjoint) classes of 12-clubs which have the
the form 611111, 101111, etc,, on E and have a 1 at p. Let Dys oevy N be the cardinality
of Nl’ ceey N6’ respectively, Then, denoting E by pl’ .++s Dgy We see that
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1, n, = 6 for each i, For if ni were 7 for some i, there would be 7 12-clubs
covering the 6 points p, Pg> eoes 31, cee3 Pg and having 0 at Py These wouid have o
cover all the remainder of the 42 points including Py 2 contradiction,

2, n, =< 5 for each i, For if n, were 6 for sume i, then the sum of all 6 weight
12t 5 would be a vector of weight 36, the complemeat of which would cover all 7 points

Ps Pys «vvs Pos 2 coniradiction to our agsumption that Pys «-0s Py is not contained in any
weight 12 code vector,

3. n,=5 implies n, =< 3for alli# j, Alternately, n, + 1, =<§foralli# j. For

3 ]
N, uNjisaclass of 12~clubs with 1*s at the 5 points p, Py ""ﬁi’ ...,'p\]., eses Dgs
and).5=8o

4, Thusu=n1+...+n6<25. For if n, = 5 for some i, then all n,, for j # i,

are 3; thus v = 20, I n, = 4 for all 3, then v <24,
Thus one of our possible ambiguities is eliminated,

5. The Decoding Procedure,

First, perform the 4, 324 dot products consisting of ail the weight-12 parity checks
which cover the first coordinate of the code.

The outcome is the number of parity-check values equal to 1, If there are 6 or fewer
errors present, act according to the following directions:

(1) If outcome is 0, no errors are present,

(2) If outcome is 2224 or greater, then the value in the first coordinate is in error,
Change the value, cycle the vector once, perform the 4, 324 dot products, and go to (1),

(3) 1If outcome is 2208, 2192, 2176, or 2148, then an uncorrectable error of weight
6 is present, Hence, declare the vector in error and thus detect but do not correct it.

(4) ¥ the outcome is 2160, cycle and repeat the checks, If the outcome is always
2160, then there is an uncorrectable error of weight 6. Otherwise, the outcome will be
%224 at various places, in which case proceed as in (2).

(5) If the (positive) outcome is 2132 or less, or if it is 2148, 2164, or 2180, then
the first position is correct but there is present a correctable error of weight 5 or less,
which will be corrected on repetition of these cycling and parity-check operations,
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This procedure corrects all errors of weight 5 or less and 18 percent of all errors
of weicht 6, (There are no other correctanie errors,) It detects all other errors of weight6,

Steps (1) through (5) are easily derived from Tables III-2, II-3, III-4, Remark 2 and
Proposition 2,

6. Appendix.

How the computer was used, A basis for the code, generated in 1966 for our

research on 5-designs, was typed into storage, The Ag = 220 12-clubs containing three
fixed spots 0, 1, 2 were then generated and stored. Since the invariance group of the code
is 3-set transitive, it sufficed to compute what we wanted on this tableau. The 14, 130
3-subsets of {3,4, ..., 47}, 47 standing for o, were then processed in turn:

1, The first action taken was to orbit the 3-subset under the group of order 3
fixing the tableau, generated by (ﬁ 1) which permutes 0 to 1 to 2 to 0. If any member of
the orbit of the triple had been processed already, the present triple was dropped and the

next one taken up,

2, The next process was to compute y for the triple a, 8, y, which passed test 1,
The three columns of the tableau, having been converted to words, were simply '"anded"
together, and the weight of the resulting word was p for the 6-set {0, 1, 2, a, 8, y}. The
1 counter was bumped, and whether {a, B, ¥} was fixed by the 3-group above was counted
also,

3. If u=0, the value of y was feund, This required "anding" a, 8, and y in pairs
and for the "and" of each pair, computing the '*fand" with each of the 42 other columns J,
and then the weight of the result, recorded as a function of J. After that, a permutarion in
PSL,, (47) carrying {0, 1, 2} to {a, B, v} was calculated (see below) and performed on the
columns of the tableau, Then, after columns {0, 1, 2} and {a, B, y} were interchanged,
the same routine was run again, An instruction to print and pause if » were not 8 for any J

was present, but was never executed,
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a
The transformation ( c 3), where

a=8,5, +58, - 28,5, (243, -5;)
b=25,(S, - S,) §,)
c=25,-8, -8, (23)

d=2(S, - S,), (1)

is in PGL, (47) and carries {0, 1, 2} to {Sl’ Sgr S3}, provided none of the §'s i§ «.
(Because our 3-sets were generated in the order 3, 4, 5; 3, 4, 6; ...; 3, 4, 47;

3, 5, 6;,...; 45, 46, 47, only S3 could be » = 47, and the values for a, b, ¢, d in that

case are in parentheses above,) The determinant ad-bc was tested for quadratic residuacity;
when it was not a quadratic residue, the matrix was multiplied on the right by (I} i), which

is in P(?rL2 (47), not in PSL2 (47) and has the effect (01)(2) on 0, 1, and 2,

A large number of hand checks of every part of the program was performed; also
internal program checks were written in; the accuracy is highly recommended. Once the
tableau was cast inte proper form for processing, the whole program, written in Fortran,
ran in four minutes of execution time (1900 kilocore-seconds used) on a PDP-10 time-
sharing system.

A fast weight-counting routine, in which the effort is proportional to the weight, was
used, Takenfrom [4, p. 16], the essential idea is that the least significant bit equalling 1
in the word W is made 0 while all other bits are unchanged by the step

W= W, AND, (W - 1),

In our problem the highest weight computed was 5,

The fact that v has the constant value 8 whenever ;= 0 was a surprise to us; it was
suggested by some preliminary results typed out for hand checks, and then the instruction
to print whether v was different from 8 was written in,

The output of the program was the y-distribution of the 3-subsets of 13, ..., 47}
according to whether or not they were fixed by the 3-group acting on the tabieau, It is
shown in Table III-5.
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TABLE III-5. NUMBER OF TRIPLES*

1= 0 1 2 3 4 5 6 7
Not Fixed 899 2170 1060 536 50 10 0 0
Fixed 3 0 0 12 0 0 0 0

*The tables in the text were derived from this one by simple calculations,
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PART IV
ON THE (60, 30) QUADRATIC RESIDUE CODE OVER GF(3)

1. Introduction,.

The code A of the title has been defined as one of an infinite class of extended
quadratic residue codes, in [1] for example, That every code-vector in A has weight
divisib’e by 3 is also proved there - the result follows from the fact that the code is self-
orthogonal, The square-root bound on the minimum distance d comes from (see [ 1])
d1 (d1 -1)=52 -1, whered=1+ dl; thus d1> 8, sod>9; henced =12,

Pless has defined a class of self-orthogonal codes over GF(3) which includes a
(60, 30) code for which the entire weight-distribution is known, The minimum distance in
Pless' s code is 18, and the distribution of weights is given by the entries in Table IV-1
[4]. 'rhis weight distribution is unique in that the MacWilliams equations have a unique
solution for such (60, 30) codes when the minimum distanée is 18 (see [ 5]).

Using a "contraction" mapping (in subsection 2 of this Part), we are able to show in
subsection 3 that the code of the title has minimum weight either 12 or 18; that is, minimum
weight 15 is not possible. Then, in subsection 4, we derive a simple result on the minimum
weight in certain cyclic codes. This allows us to use a computer to determine that the min-
imum weight is 18 on examination of two million code-vectors, Thus, the code yiclds new
5-designs of block size 18, 21, ... , 33 on 60 points, and it has the same weight d:stribu-
tion as the Pless code in the following table.
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TABLE IV-1. (60, 30) PLESS CODE*

Number of Code-Vectors Weight

1 0

0 3

0 6

0 9

0 12

0 15

39 01080 18

2414 56320 21

88242 42960 24

17 20740 38080 21

185 03590 81824 30

1101 47500 94040 33

3609 93693 80880 38

6395 84677 67040 39

5927 89001 50800 42

2727 06401 78880 45

573 92571 921760 48

48 50290 78560 51

1 31440 38880 54

714 51360 517

41184 69

*From Reference [4].
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Gleason [ 2] has found the generators of the weight distributions of all self-
orthogonal codes over GF(3) (i.e., codes for which the orthogonal code has the same
weight distributionj, In polynomial form they are

P=y4+8x3y
3 3,3 3
Q=(y" -x)'x (1)

Here, x is the weight counter and y is the 0 counter, P gives the weight distribution of the
(4, 2) code spanned by 1 1 1 0and 1-1 0 1,

The weight distribution of the Golay (12, 6) code, for example, is written as
P3 - 24Q. The set of all products of P and Q of degree 60 yields all the solutions to the
MacWilliams equations in that case, namely

6.3 3.4 5
Q,PQ, Q.
That is, any solution has the form

15 2 _15-3i i

P +Z aP Q
1 ]

15 12, 9.2 -
P, PQPQ, ¥

for appropriate constants Oy oees Op. In order to produce d =12 we need only consider
the solutions

15

mP3Q4 + nQF" +P (2)
for integers m and n,
The tails of the weight distribution (2) for our code A are therefure:
Weight Number of Code-Vectors
12 m
15 12m +n
60 -n + 4.1, 184 (3)

for some proper choice of m and n, We will now explain a method which allows us to prove
that m = 0 implies n= 0, i,e,, that if d > 12, then d = 18,
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2, The Contraction Mapping for Codes.

Suppose we have a concrete n-dimensional vector space V = F" over the field F.
If we choose a set of m vectors from V and use these as linear functionals on V via the
usual inner product we get, of course, a mapping i from V to Fm, If A is a code contained
in V and if we restrict ¢ to A, then we have mapping from A into Fm.

We now specialize the above situation: let A be an (n, k) code over GF(3) and let ¢
be an invariance of A, Set V= GF(3)n viewed as the containing space; set r = order o,
For our linear functionals we shall take certain vectors v with the property that either
ov=vorov=-v, Sometimes there are no such non-zero v, however, so we must choose
o properly. In particular, we have the following two resuits,

LEMMA 1, If 4ir and ar/ 2__ 1, then there does not exist any non-zero vector v
of V with eitherov=vorov=-v, o

/ 2v = v implies -v = v implies v=0, And ov= - v implies
/
or/ 2v = (-l)r’ 2v implies ~v = v implies v=10,

Proof, ov= v implies o

LEMMA 2. E 2|r and r/2 is odd with /2 = - 1, then there does not exist any
non-zero vector v of V with ov = v, Moreover, if each cycl'e- of ¢ is the same size, then
for each cycle of o (o denotes the permutation part of ¢) there is a unique non-zero (up to
multiplication by +1) vector v of V whose support is the given cycle with ov= - v,

r/2

Proof, Kov=v, theno '"v=vand -v=vandv=0, Clearly, = - v is possible.
Let w be a vector with a 1 at one place in the given cycle and 0*s elsewhere, Consider

W - oW + 0o - veo F &y Ly, Clearly, the support of v is the given cycle, That

ov = - v is clear, Suppose v' is another such with support v' contained in the given cycle.
Then clearly the support is the whole cycle and, by adjusting if necessary, we can assure

that v - v* has a 0 on the cycle, Buto(v-v')=v' -v=-(v-v'), Thereforev -v' =0,

REMARK, The Lemma is true even if the cycle sizes are diffe;'ent: one has to
replace /2 by s/2, where s is the order of g restricted to the given cycle,

We now assume A is self-orthogonal and every cycle of ¢ is the same size, namely
r/2. Thus (r/2)In; say (r/2) s = n, The n coordinates split up into s cycies of size r/2.
Let Vi eees Vg be the unique (up to multiplication by +1) vectors of V described by
Lemma 2, We map V= GF(3)n tow = GF(3)8 by
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Vv~ (vo Vis Vo Vg oy Vo vs), where x » y denotes the ordinary dot product.

THEOREM. y(A) is a self-orthogonal subspace of W.

Proof. We view the coordinates as indexed by (i, j) where 1 =i=<s, 1<j=r/2,

the orbits of ¢ being {(i, 1), (i, 2), ..., (i, r/2j}fori=1, 2, ..., s. Now, v, is 0 at
Suppose x,y €eA. Then

(ir, j) for i* #i. So we view v, as (vi, 1, vi’ 9,2 Vi, r/2)'

r/2 r/2
=(Z X 23 000, & V_ X )
V) (3:1 Ly e B Vs s,

similarly for y(y). Therefore

s r/2 r/2 *)
edy) =2 Z X v, v, X..¥. .
Y(x) » Y(y) RIS 3,154, 7,k

But v j2 = 1 for all i, j, and therefore

i

s r/2
z El v jvi ]xi jyi,j =X . y=0. We therefore view (*) as r/2 sums
i=1 = 93 4] 1

i s r/2
s r/2

Z I VeV Kt
i=zl j:zl vijvijxijyij + i=1 j:l 1 1, ]""1 1 1,]+1
s r/2

Yo W /2T /2

the second index taken mod r/2, Now suppose ¢ is such that o sends (i, j) to {(i,i + 1)

multiplied by ej, ie., (yi,j) (e jyi, j+1)' Since each v, is sent to vy by o, vi, j#1 =
-€. vV, ,o0orv, .v. . . =¢. Hence
ILj i,j i+l 75

s r/2 s r/2
Z Z Vv, .WwW. .. X. .¥..,==2 T €X..Y..
o1 o1 B3 BBEULPLET S5 e

But e x. .= (0x). . . Therefore

'] i, j+1

s r/2 s r/2
Z 2 eX..¥.. 4 % Z (0x)..,Y.. ,=0,
i=1 j=1 1,]y1,]+1 =1 j=1 ( )1, ]+1y1,J+1

Each of the other sums is in a similar manr~i seento be 0 - Q.E.D,
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REMARK, The situaticn is even simpler over GF(2). For example, the extended {
Hamming (8, 4) code under y: i +~ - i’1 (mocd 7) whose orbits are (2, «)(I, 6)(2, 3)(4, 5) i :
is mapped onto the obvious (4, 2) self-orthogonal code,

gt
e EWe - eetme W x et

] 3. The (60, 30) QR Code Over GF(3).

We now choose A to be a (60, 30) extended quadratic residue code cver GF{3).
PSL2(59) has order 60.59.29, and from Dickson { 3] (or Sylow) we know that in particular
there are elements of order 5 in PSL2(59). We actually compute an invariance o of the code
A which has its permautation part of order 5 and which satisfies 05 = - 1, {The computation
is sketched in the Appendix.)

We then get 12 vectors M URIETLT) each of weight 5, such that o(vi) =-v; for
i=1, ..., 12, Using these, we map A 0 a subspace of Gl’-‘(3)12 w. .ch, by our previous
Theorem, is orthogcnal to itself, We calculated that in fact it hag dimension 6, and we
then proved it was equivalent to the Golay (12, 6) code by the following method,

We chose gix linearly independent vectors from ;p(A) and by row operations and
column interchanges obtained the following six vectors (+ = 1, - = - 1, blank = 0): -

1 23456 7 89 10 11 12

+ -0+ + - - ,
+ - -+ - + 0
- + - + + 0 +
- - - - 0 - +
- - + + o+
+ 0 + + - - 4+

Then by monomial operations we transformed the right-hand half of this array into

0 + + + +

+ 0 + - -
i + + 0 + - -
i + -~ + 0 + -
+ - - 4+ 0 +
. + + - - + 0

\ which is Pless's matrix §; in her generation of the Golay (12, 6) code by (16 ; 85) [5].
Therefore we have proved
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PROPOSITION 1, When A is the (60, 30) extended quadratic residue code over GF(3)
and ¢ is any non-trivial invariance of A such that 05 = - 1, then the mapping y/ defined pre-
viously maps A onto the Golay (12, 6) code over GF(3).

Proof., We proved this for one such o, but all are conjugate in the invariance group

of A.

COROLLARY. No vector v of weight 15 in A can be stabilized by an invariance o of
the type described in Proposition 1 (stabilizing is taken in the sense that ov = - v),

k
Vir e-es V19 But then  would map v :0 a vector of weight 3, and there are none in the

Golay code.

This is true because v would have to be v, & v]. + v, for three of the special

PROPOSITION 2., If m = 0 in (2), then n= 0 also. That is, if A has no weight 12
vectors, it has no weight 15 vectors, either,

Proof. X m =0, then n is the number of weight 15 vectors in A, Thus n =0, The
invariance group of the code, ''2 PSL2(59)," hasorder 60« 59+ 58=3. 68,440. Since the
number of weight 60 vectors in A is 41,184 - n, nmust be less than4l, 184, By[}, p. 148] the
stabilizer (permutationally) of a weight 15 must have order dividing 15, i.e., the order must
bel, 3, 5, or 15, It cannot be 5 or 15 by the Corollary above. But if it is 1 or 3, there are
at least 68, 440 vectors of weight 15, a contradiction - Q.E.D.

Thus we have reduced the question of the minimum distance in the (60, 30) quadratic
residue code over GF(3) to the question of the existence of weight 12 vectors in the code,
For this question, we now develop a computationally feasible approach, It is based on
Pless' s method [ 5] for her symmetry codes over GF(3),

4, On the Minimum Weight in Cyclic Codes,

Let n = 2k + 1 be an odd integer and let A be a cyclic (n, k) code over F = GF(q).
Pick a generating matrix for the code as follows:

G= [Ik; C; S]
where Ik is the k x k identity matrix, C is a k X 1 matrix, and S a k X k matrix, Suppose one
knows that A has 2 minimum weight =w, where w is an even integer, (The case of w odd is

easily treated also, but we do not do this here.,) We describe a method for determining
whether or not the minimum weight is w, In fact, we prove the following,
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THEOREM 2, I every vector of A with weight =w/2 - i on the first k coordirates
has weight > w, then A has minimum weight > w,

Proof. Leta e A haveweight <w, Then the weight of a on the frst k coordinates must

be = w/2, by assumption, We can insure, by cycling to the left if necessary, that a has a
non-zere entry on the (k + 1)-st coordinate. This having been done, the cycled a still
must have weight = w/2 on the first k coordinates by assumption, since cycling does not
change the weight. On the last k coordinates, a now has weight < w/2 - 1, But by cycling
k times to the right, the new a will have weight < w/2 - 1 on the first k coordinates, a
contradiction, Hence the Theorem,

Thus, the total number of code-vectors to be examined is at most

w/2-1 -
5 (-
i=0

In examining code-vectors in accordance with Theorem 2, one easily sees that if the
coordinate is 0 in the position designated C on page IV-T7, then a cycle of that vector once to
the left will produce a vector already examined (if we run through the subsets lexico-
graphically from the left - as we did; i,e., the first 5-subset of rows was {0, 1, 2, 3, 4},
the next was {0, 1, 2, 3, 5}, and the last was {24, 25, 26, 27, 28}, Such a vector need
not be further processed.) Implementing this observation reduced the computer time needed
by about 1/3, ‘
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Note that for the (60, 30) extended quadratic residue code over GF(3) we know that
d = 12; and we can examine the cyclic (59, 29) "*'small" quadratic residue code (of the same
minimum weight as the {60, 30)). Thus at most

5 .
z (2.9) . 21712 2 105, 545
=0 \1

vectors need be examined,

The above procedure was carried vut by means of a Fortran program on a PDP-10
time-sharing system, Internal checks were made to see whether eaci: vector calculated
had weignt divisible by 3 and to print the total number of code-vectors calculated. Both
these checks were satisfactory, Another check was an instruction to print any vector with
weight less than 18, This was never executed, Therefore, we conclude that the (60, 30)
extended quadratic residue code over GF(3) has minimum distance 18, and that therefore,
by [1], the code-vectors of weight w, for 18 = w = 33, yield 5-designs. These 5-designs
have, of course, the same parameters as those arising from the Pless codes [5]; butas
Pless has shown, hers and ours are inequivalent, because they have different auto-
morphism groups: Pless has shown that the group acting on her designs contains PSLZ(ZQ);
ihig cannot be contained in the automorphism group of the present designs, which is
PSL2(59).

We are grateful to David J, Segal for assistance in programming this problem,
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5. Appendix.

Using the isomophism between SL2(59) and the matrix group over GF(SSZ) consisting
of all matrices of the form

( a b
59 a59)

with determinant 1 {Dickson [ 3] page 264), we calculated a GOth root § of 1 in GF(592):

6 0
the matrix (0 6-1) then corresponds to wnat we want in SL2(59).
Let e GF(IZZ) be such that 9“1 = 1, a primitive (¢ + 1)-st root of unity. Then

(6 0 1) has order (¢ + 1)/2 when viewed in SLZ(GF(Qz)). Set J = ( P 1) , Where

0 6" 0ol o
pﬂ‘"1 = -1, Then
(e o) , [o+dt
J 4] =
\o o i 0

is of order(¢ + 1)/2 when viewed in SLz(ﬂ). 6 + 6% is the trace of § from GF(Qz) to GF(¢),
so the desired element of SLz(!Z) is that on the right,

The calculation of & proceeds: let K = GF(592) and F = GF(59). Then K consists of
all roots of 1 of order dividing 60 « 58, Aside from 1, the 6()th roots of 1 in K are therefore
all the roots of all the irreducibie second-dezree polyomials over F, since these are the
elements of K not in F, Such polynom.als have the form

2
fa(x)=x -ax + 1,

since the constant term must be o « a59 = 060 = 1, They are reducible if and only if

a2 - 4 is 0 or a quadratic residue mod 59, Since 22 -4=0, 32 -4=5, 4" -4=12

52 -4=21, fa(x) is reducible for ta =1, ,,., 5; but it is irreducible for a =+ 6, We then
found

x12 = - x2 (mod x2 - 6x + 1),

which means f6(x) has exponent 20, and that roots of it #r therefore primitive roots of 1 of
order 20, We denote a root or x2 - 6x + 1 by x and take 1 and x as a vector-space basis for
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Kover F, We put w=cx + d and solve for c and d in F in the equationw2+w+ 1=0,
making w a primitive cube root of 1, Then 6 = wx is a primitive 60th root of 1, and
6 =10(3x - 2). Tuus trace 6 = 10(3 . 6 - 2:2) = 22, Hence

22 -1
1 0
or the permutation y |~ 22 - y°1 of {GF(59)u »}, is what we want,

We find the signs for the monomial representation of this invariance by the factoriza-

22 -1 1 22 /0 -1
1 0 0 1 (1 0

The firsi of these is the cyclic shift raised to the 223nd power; the other is the special in-

tion

volution of PSLg(59), the signs for which are given in [1, p, 131], Thus our monomiai
raised to the 6th power is given by the following a2rray:

Monomial Transformation

"Fixed" Vector

58 16- 31- 40- 48 + o+ + -
23- 33 41 50- 6- + - + o+

4- 47 45- 9 12- + - - + o+

7- 27- 1 25 17- + - 4+ 4

5- 46- 21 54 15- + -+ 4+
10- 13- 36 34- 18 + - -+
22 57 14 26 28- + - + - -
30 52 43- 56- 3- + - -~ - -
20- 39 11- 42- 2 N
51 19 25- 38~ 29- - 4+ 4+ 4+ o+
0 53 55- 8 24 + - - ¢ -
w- 32 37T 4 49 “- 4+ o~ 4 -

FR70-3N
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Read across a row from left to right to see the permutation action of the order-5 element;
read down a column to see the action of the element of order 30. The signs are interpreted
as follows: for row 1, the permutation matri< corresponding to (58, 16, 31, 40, 48) is made
by row permutations of the identity matrix. Then the indicated rows are multiplied by minus
signs (rows 16, 31 and 40). In other words, the coordinate value in place 58 goes to place

16 and is multiplied by -1. These signs are not so interpretable for the element of order 30,

References

[1] E.F. Assmus, Jr., and H. F. Maitson, Jr,, "New 5-Designs," J, Combinatorial
Theory 6 (1969), pp. 122-151 (plus Adcendnm dated 30 June 1969).

[2] A.M. Gleason, "Weight Distributions of Formally Self-Orthogonal Codes, "
Private Communication, August 1969,

[3] L.E. Dickson, Linear Groups, Dover, N.Y,, 1958,

[4] John N, Pierce, "Weight-Distribution of the Ternary (60, 30) Self-Orthogonal Code
with Minimum Distance 18," Private Communication, August 21, 1969,

[5] VeraS. Pless, "On a New Family of Symmetry Codes Over GF(3) and Related
New 5-Designs,” J. Combinatorial Theory (to appear).

v-12 FR70-3N




o e e g o~

A

PART V
MISCELLANEOUS RESULTS
SECTION 1

A REMARK ON PERFECT BINARY CODES

PROPOSITION, Let AS GF‘(Z)n be a linear perfect code withd=2e +lande =1,
Then, not only does e + 1 dividen - e but (n - e)/(e + 1) is odd and A contains the all-1 vec-
tor. Moreover, Ay (defined below) is odd for h=0, 1, ..., e.

Proof, That e + 1 divides n - e follows from design considerations (see for example
[1], p. 250). There are (n - e)/(e + 1) code-vectors of weight d with 1's at e given places and
necessarily having no more common 1's, The existence of these vectors comes from de-
sign considerations - see [1]. If (n - e)/(e + 1) is even, then the sum of all these vectors
is a vector of weight n - e; and every vector of weight n - e is in A, This is cbviously
impossible, Hence (n - e)/(e + 1) is odd and the s~m is the all-1 vector.

The basic idea here is to use the characterizing property of perfect binary codes,
that the minimum-weight vectors form a tactical configuration of type 1; (e +1) -d - n,
Then these vectors also form tactical configurations of type
n-h )

_\e+1-h

¥
)Lh—( i-T );h-d—n, forh=0G, 1, ..., e

e+1-h
Thus, for h = e, we get the result of the previous paragraph; for h= e - 1 we have

_nh-e+l n-e

Ae-I— e+ 2 e+1

and if we consider the Ae-l code-vectors of weight d covering a given e - 1 places, we see
that each coordinate position outside the chosen (e - 1)-set is covered by exactly A of these
vectors, Thus, since )\e is odd, if we add all these vectors we get all 1' 8 outside the
chosen (e - 1)-set, and by the same argument as in the previous case, we conclude that

X is odd, Since
e-1
_n-e+1

Me-1= T x 2 e

*7\ o is the number of minimum-weight vectors,
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it follows that n - ¢ + 1 and e + 2 are exactly divisible by the same pcwer of 2, The same
conclusion holds forn-e+2ande+ 3, forn-e+3ande+ 4, ..., and for n and
2e + 1,

geierences

[1] E.F. Assmus, Jr., and H. F. Mattson, Jr., "Tactical Configurations and Error-
Correcting Codes, ™ J. Comb, Theory, 2 (1967), pp. 243-257, MR 36, #64.
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PART V
SECTION 2

ON A PROBLEM OF SEIDEL

We found the Proposition of this section in response to 2 question of J.J. Seidel, It
is related to the question whether his '"1288'" graph [ 2] is strongly regular,

1, Definition of the Graph.

The Golay code consists of 4, 09€ vectors of 24 coordinates over 0, 1, Aside from
the all-0 and all-1 vectors, ii consists of 759 vectors of weight 8, 2576 of weight 12, and
752 of weight 1€, Since the code is self-orthogonal under the usual inner product, any two
code-vectors must have an even number of 1's in common positions with each other, It is

well known that the Mathieu group M,, , is the automorphism group of the code.

24
The vertices of the graph are the code-vectors of weight 12, Two vertices are
joined by an edge if and only if they have exactly 6 common 1's,

2. The Action of M2 4

Let us call the code-vectors of weights 8 and 12 8-clubs and 12-clubs, An 8-ciub
and a 12-club meet in 0, 2, 4, or 6 points. Then there are 2576 12-clubs, and it happens
that (order of M2 4) = (order of M
order at least that of Ml

12) =
9

But inside a given 12-club there is a 5-6-12 Steiner system selected uniquely by the
code; i. e., wechoose for each 5-set of coordinates in the 12-club the unique 8-club of the
code containing it; this 8-club must intersect the 12-club in 6 points, which make the 6-clab
of the Steiner system we seek, Since now the stabilizer of the 12-club permutes all the
8-clubs, it is a group of automorphisms of the 5-6-12 Steiner system and hence has order
at most that of M12' Therefore, M12 is the stabilizer of a 12-club, and M2 4 is transitive
on the 12-clubs. In particular, we see that the graph is regular,

The 6-clubs of the 5-6-12 Steiner system are 132 in number, and the other 6-subsets
of the 12 points are 792 in number, These latter are the sets of intersection of two 12-clubs

meeting in six vwoints, for such 6 points cannot be contained in an 8-club since the sum of the

two 12-clubs and the 8-club would be a code-vector of weight 20; and M12 is transitive on
the 132 6-clubs and on the 792 other 6-sets,
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Now consider the graph defined above, By the transitivity of M2 4 on the 12-clubs
and of Ml?. on the "non-club" 6-sets, any vertex and emanating edge may be taken {0 a pre-
assigned vertex and to a preassigned non-club 6-set within it, The latter, however, gives
rise to two edges for the other two 12-clubs meeting the preassigncd one in exactly those
six points. Thus we have started with vertices X and Y joined by an edge, and have mapped
X to Aand Y to B or C in the triangle ABC. In ABC the underlying 6-set S of intersection is
the same for every edge. Now, Todd [ 1] displays an element t of order 3 in M24 which fixes
S pointwise and is transitive in A. B. C. Thus, if (X, Y) goes to (A, B) we can operate with
t to send B to A and A to C, sending (X, Y) to (C, A). Thus

PROPOSITION, Mz 4 is edge-transitive on the graph,
The valence of this graph is 2, 792,

Seidel' s actual concern is with his ''1288" graph, obtained from the above graph by
identifying the vertex A with its complement A', and four edges joining them to B, B' (if
one edge exists, all exist).

References

[1] J.A. Todd, "A Representation of the Mathieu Group Mag4 as a Collineation Group, "
Annali di Mathematica Pura ed Applicata, (IV) Vol. LXXI (19€4), pp. 199-238.
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PART V
SECTION 3

A CLASS OF (16k, Tk + 1) CODES FOR k ODD

Let A be an (8, 4) extended Hamming code, B its reverse., Thus, AnB= {0, an-1},
A + B = all even-weight vectors, Now set

V=(A; A; ...; A);(B; B; ...; B)
k-times k-times ’

where the semicolon ;" denotes juxtaposition of codes (external direct sum). Map V into

GF(2)16k
(agy ..., 2,; by ...y (a+2b a+2b .3 b+ T a;
1 1 b I~ A R R it B A
by+ T a, .. .)e
17!2
¢ Clearly, dim V = 8k. We show that the kernel has dimension k - 1 and hence C = image
of V in GF(2)1% has dimensions 8k - (k - 1) = Tk + 1,
. Ifa+ub-(00 0),theneithera—0and2b-00ra~a111and2b
] ) 1 ]
i i# i#
all-1, Assume we have a representation of 0¢C with ay=a,=...=2a = all-1 and PP

=a =0, Let d(C) denote the minimum weight in C,

k
Case 1, r odd, Then it follows that br+1 = br+2 =,,, = bk = all-1 and b1 = b2 =
= br = 0, Since kis odd, k - r is even and hence a, = 0 - a contradiction,
Case 2, r even, Then bl = b2 =,.,, = br= all-land b +1 =b =all- 1 Now
k - r is odd and we have a representation of 0, Thus, there are ( ) ( ) ) =
k k-1

(1/2) 27 =2 elements in the kernel and this proves our assertion,

Fork=1 C=A; B, Forkz 3,d(C) = 8 since we can take a = 11010001,
b1 = 11000101, ag = b3 = all-1 and 8y =2g+ 2y, b2 = b3 + bl‘ Then we get
(a1 + bl’ ay+ b2, 0, ... 9 ay+ bl’ ag + b2’ 0, ..., 0) which has weight 8, (Here
a, = bi= 0fori>3,)
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Cne checks easily that C is contained in its orthogonal, Since C has a generating
set consisting of vectors whose weights are = 0 (mod 4), C has all weights = 0 (mod 4).

Summary. For each odd k we have constructed a (16k, Tk + 1) binary code C con-
tained in its own orthogonal, having all weights divisible by 4, and containing vectors of
weight 8,
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PART V
SECTION 4
THE TWO SELF-ORTHOGONAL (16, 8) CODES OVER GF(2) WHOSE
WEIGHTS ARE DIVISIBLE BY 4

The unique weight distribution for a code of the title is, by the MacWilliams

equations,
0 4 8 12 16
1 28 198 28 1

One such code, A, is the direct sum of two extended Haruming codes, (8, 4). Another, B,
is given by the row space of the following matrix, M:

il 11 00 00 00 00 00 00
11 00 11 00 00 00 00 Q0

i1 00 00 11 00 00 00 00

i1 00 00 00 00 00 00 11
10 10 10 10 10 10 10 10

These two codes gre obviously inequivalent because seven weight 4 vectors of A never
appear in the configuration shown in the matrix M,

We now show that any (16, 8) self-orthogonal code over GF(2) all of whose weights
are divisible by four is equivalent to either A or B, Suppose C iis such a code, Theorem
4,2 of [ 1] shows that the vectors of each weight class form a 1-design, Hence, given any
coordinate of C, there are seven weight 4 vectors with a 1 at that coordinate,

Suppose first they can be brought to the form of the first seven rows of the matrix
M; i.e,, that they all share another‘ coordinate where they are 1, The 7-dimensional
space they generate contains (g) + (Z) = 70 weight 8 vectors, Hence there are in C 128
further weight 8 vectors, Any one of these must have precisely one 1 in each of the eight
blocks of two displayed in the matrix M, for if it had two 1's in any block of two it would

have to have either no 1's cr two 1's in every other block and it would have already been

FR70-3N V-1
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PART V
SECTION 5
A RESULT ON THE AUTOMORPHISM GROUP OF A 4-DESIGN CODE

Let A be an (n, k) code over a finite ficid F with d(A) = 4. Suppose the minirnum

weight vectors yield a 4-design with )‘2’ A3, A 4 satisfying

7\2-2x3+x4>0

A # Ny

(conditions which are "always" satisfied), Then we claim that the invariance group of A

cannot contain a transposition,

To prove this claim, suppose (12)(3)(4) ... (n) is in the invariance group, i,e., there

is an invariance acting by the rule (al, : P an) o=
oy gy 2325 - vtyRy)

The minimuin weight vectors with a, = a2 = 0 yield a 2-design on {3, 4, ..., n} whose ) is
7“2 - 2)\3 + )\4. This implies that Qg == ... = for otherwise a - ag has weight less than
4 for some minimum weight a with ay = a2 = 0. So we can assume Q= @=... =q = 1.
Since X £ Al, we choose a2 minimal weight a with ay = 0, a, # 0. Then a - arhas weight

2 - a contradiction.

%*
That is, every pair among 3, 4, ,.,, nis covered by >\2 minimum weight vectors, of
which 2)\3 ~ A4 cover one or two of uic spots 1, 2,
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PART V
SECTION 6

ON LINEAR CODES SUPPORTED BY STEINER TRIPLE SYSTEMS

1. Introduction,

Peyton Young conjectured to us at the Chapel Hill Conference in May, 1976 that there

are several t-designs for large t, in particular that there is a 1;9-10-20 design. If so,
then the contraction of that design is 2 Steiner triple system on 13 points. I the design on
20 points arises as the support of all the vectors of weight 10 in some linear code, then the

analogue holds for the weight 3 vectors in the contracted code of length 13, These considera-

tions motivated our attempt te determine whether Steiner triple systems (hereinafter called
STS) can support codes, We record some results which :aay be helpful in performing the
necessarily tedious calculations involved in this question,

An old and related result will serve as an example, There is a unigue Steiner
system of type 1;3-5-17 (see [2], Satz 6) and it has the parameters to support a

perfect binary code, namely, 1;(e + 1) - d - n. But no such code exists, Therefore, thig
Steiner system does not support any binary code,

A simpler example is the STS on seven points; it supports the well known Hamming
(7, 4) binary code,

The perfect (11, 6) ternary code of Golay has minimum distance 5, Thus, the
contraction of it to length 9 yields a code supported by the STS on nine points,

2, Calculationg.

We consider a STS on the set S of n points, It is well known that n =1 or 3 (mod 6)
and that the number of triples is n(n -~ 1)/6.

Suppose A is a code over GF{(q) of which the minimum weight vectors 'are" the
triples of the STS, Since d =n - k + 1 and the code is not optimal, we have k< n - 2,

Let Y be an m-subset of S, m = 3, and ‘A the number of triples which meet Y in
exactly 1 spats; then one can easily verify that

Pl o
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where AO is the total number of triples, Al is the number of triples covering one point,

Ay = (n -1)/2, and A9 = 1. In our case the equations are !
Yo+ Vi + Vg + Vg n(n-1)/6 |
¥y +.2y2 +3y3=(n - Hm/2
Yo + 3y = m{m - 1)/2 (1)

From now on, we take Y to be the support of a vector of weight m in the orthogonal
code AL, Then y, must be 0, and (1) becomes

yo=é-(n-m)(n-m-1)
Yo =m (n - m)/2
yg = m(2m -n-1)/6 ’ _ (2)

We assume Yo > 0, and then the value of Yo in (2) implies that the triples contained
in the complement of Y form a Steiner triple system on n - m points, hence m = n - 3,

The value for Vg implies

mangl’

and
m(2m -n - 1) = 0 (mod 6) (3)
Sincen=1, 3(mod 68) and n - m = 1, 3 (mod 6) we consider cases: |

Case n = 1 (mod 6):

m(2m - 2) = 0 (6)
i-m=1, 3(6)

or
m(m - 1) =0 (3)
m=0, 4(6) 4 -
And m =0, 4 (mod 6) implies that m =0, 1 (mod 3),

Conclusion: if m is not nor n - 1, then n =1 (mod 6) implies m =0, 4 (mod 6), L

v-12 FR70-3N
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Case n = 3 (mod 6):

m{Zm - 4) = ¢ {6)

3 -m=1or3(6)

The second implies the first.
Conclusion: If misnotnorn-1, thenn=3 {mod 6) implies m =0, 2 {mod 6),

We now rewrite yg a8

R ®

and note that the number of 2-subsets of Y covered by the A triples of the system contained
inYis

3y, = (3) + 250
Notice that the values m =n, n - 1, n - 2 are settled in that n and n - 1 are possible weighis
in an orthogonal code; but n - 2 is never possible, since such a vector could not annthilate
the triple coverang its two 0-positions. Thus we treat the case m=< n - 3.

We now look at the MacWilliams equations. Assume that the minimum weight in AL
is n- 3, which holds, for example, if the STS has no subsystems since if there were in AL a
vector v of weight less than n- 3, every triple covering two of the 0's of v would have its
third point also on one of the 0's of v. Thus, triples '"on” the 0's of v would constitute a sub-
system. (We ignore the trivial STS on three points at the moment.)

REMARK 1. A! has dimension 3 because it is not optimal and thus

n-n-kK)+1=n-3
orn-k<4, Wealready k.owk<n-2; hencek=n-3andn-k=3,

The equations are [1] (ALl has weight distribution {Bl})

3
B +B +Bn-q-1

n-3 n-1
1 3-y
3Bn-3 + Bn-l = 3z (n)vq S(i, v) -n
y=0
2?8 .+B_ .= ?.)3 (n)vqs_vs(z v) .o (7
n-3° “n-1 !

v=0

FR70-3N V-13




Since x' = £S(r, v)(x)v, S(1, 0) =s(2, 0)= 0 and S(1, 1) =S(2z, 1)=8S(2, 2) =1, Thus

3
=q°-1
Bn-3 + Bn-! + Bn q

2
3Bn_3 + Bn-l =nq -n
2 2 2
3 B g+ Bn-i =ng +nn-1)g-n (8)

These have the unique olution

6311-3 =ni{n - 1){q - 1)

B 4= nin - 1)(q - 1)/6

B__;=nla’ - 1) - nln - g - 1)/2

=n{g - 1)q+1 - (n - 1)/2) (%)
which implies in particular

q 2“53. (10)

From (8 and (9) we then find

I a-3 n-1
B =q -1-n(q-1[q-5= +=5%]

or

R n-4
B,=q -1-n(g-1q-—75-]

(11)

We factor q - 1 out’of (11) and regard what remains as a quadratic in q; it has discriminant
(n-1) (9 -n)/3. This means Bn is positive for n = 9. And, in general, we have

B _( n-l)2 (n - 1)(9 - n)
g-1=\- "7 T
Since we care only about n =1 or 3 (mod 6), we treat only n= 7 here (the cases n=1
or 3 being too trivial to bother with), Then B, /(g - 1)=(q - 3% - 1, ~g*ich is 0 for q = 2 or 4,
-1 for q = 3, and pusitive for q = 5, In particular, then, we have shown that on suitable
change of scalars, the all-1 vector is in the orthogonal of every code sapporting a STS

except that on 7 points for q = 2 or q = 4; and we have shown that there is no code supporting
the 7-point S7'S over GF(3).
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A Check for Consistency. Equations (8} and {9} .r. ply, from the MacWilliams
relations, that the number of weight 3 and 4 vectors in A is:

-1
Ag=—7%Q-1)

=MD - 1) - 6)n - 3) (12)

If the design comes from a larger design, there should be n(n - 1)(q - 1) (32#4-1- - -(1;) 4-sets
present from the code, but there are many more, This difierence is caused by the fact
that the weight 4's in the code don't form a design since two weight 4's can occupy the

same places withcut being scalar multiples of each other.
For the reccerd we set down our finding that

Ag = Ao - M- 1 [g(n-2)n-3)n -9+ n® + 36n% - 104n + 96].
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PART V
SECTION 7

TWO SMALL REMARKS ON PACKING

The alternating group Alt(n) is evidently a distance-3 pack 'ng of n-space over n
symbolc with no symbols repeated in a word. The cardinality of tiie packing set is n! /2,

If n=q is a prime power, then we can define the Reed-Solomon code on n symbols
with3=d=n-k+1lork=n-2, This code hag cardinality qn"z = nn'z, which is larger
than n! /2 if n = 4,
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